57 research outputs found

    A Novel Method for Calculating the Radiated Disturbance from Pantograph Arcing in High-speed Railway

    Get PDF
    Pantograph arcing is a key electromagnetic disturbance source to affect train control system in high-speed railway. Since the characteristics of pantograph arcing is related to train speed, it is necessary to investigate effective numerical modeling and measurement method. However, due to the uncontrollable train speed during on-site measurement, it is difficult to study the radiated disturbance from arcing in the corresponding speed and repeat the same measurement. Therefore, a method combined numerical modeling and reverberation chamber measurements for calculating the radiated disturbance from pantograph arcing in a high-speed railway is proposed. Numerical models of train and sensitive equipment are built to calculate the coupling coefficient in CONCEPT II. And a new measurement procedure in reverberation chamber using pulse signal as the reference source is proposed based on a speed-controllable laboratory replica to measure the total radiated power of pantograph arcing. Then the radiated disturbance from pantograph arcing to the sensitive equipment is achieved with the coupling coefficient and the total radiated power of arcing. The method is verified laboratory experiments. This method can solve the uncontrollable train speed problem during on-site measurement and improve the repeatability of measurement

    Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    Full text link
    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2?3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98439/1/cell%2E2012%2E0001.pd

    Phospholipase Cγ1 is essential for T cell development, activation, and tolerance

    Get PDF
    Phospholipase Cγ1 (PLCγ1) is an important signaling effector of T cell receptor (TCR). To investigate the role of PLCγ1 in T cell biology, we generated and examined mice with T cell–specific deletion of PLCγ1. We demonstrate that PLCγ1 deficiency affects positive and negative selection, significantly reduces single-positive thymocytes and peripheral T cells, and impairs TCR-induced proliferation and cytokine production, and the activation of ERK, JNK, AP-1, NFAT, and NF-κB. Importantly, PLCγ1 deficiency impairs the development and function of FoxP3+ regulatory T cells, causing inflammatory/autoimmune symptoms. Therefore, PLCγ1 is essential for T cell development, activation, and tolerance

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    The Assisted Positioning Technology for High Speed Train Based on Deep Learning

    No full text
    In the positioning process of a high-speed train, cumulative error may result in a reduction in the positioning accuracy. The assisted positioning technology based on kilometer posts can be used as an effective method to correct the cumulative error. However, the traditional detection method of kilometer posts is time-consuming and complex, which greatly affects the correction efficiency. Therefore, in this paper, a kilometer post detection model based on deep learning is proposed. Firstly, the Deep Convolutional Generative Adversarial Networks (DCGAN) algorithm is introduced to construct an effective kilometer post data set. This greatly reduces the cost of real data acquisition and provides a prerequisite for the construction of the detection model. Then, by using the existing optimization as a reference and further simplifying the design of the Single Shot multibox Detector (SSD) model according to the specific application scenario of this paper, the kilometer post detection model based on an improved SSD algorithm is established. Finally, from the analysis of the experimental results, we know that the detection model established in this paper ensures both detection accuracy and efficiency. The accuracy of our model reached 98.92%, while the detection time was only 35.43 ms. Thus, our model realizes the rapid and accurate detection of kilometer posts and improves the assisted positioning technology based on kilometer posts by optimizing the detection method

    A Fast, Hybrid, Time-Domain Discontinuous Galerkin-Physical Optics Method for Composite Electromagnetic Scattering Analysis

    No full text
    To accelerate the solution of transient electromagnetic scattering from composite scatters, a novel hybrid discontinuous Galerkin time domain (DGTD) and time-domain physical optics (TDPO) method is proposed. The DGTD method is used to solve the accurate scattering field of the multi-scale objects region, and a hybrid explicit-implicit time integration method is also used to improve the efficiency of multi-scale problems in the time domain. Meanwhile, the TDPO method is used to accelerate the speed of surface current integration in an electrically large region. In addition, the DGTDPO method considers the mutual coupling between two regions, and effectively reduces the number of numerical calculations for the other space of the composite target, thereby significantly reducing the computer memory consumption. Numerical results certified the high efficiency and accuracy of the hybrid DGTDPO. According to the results, in comparison with the DGTD algorithm in the entire computational domain, the DGTDPO method can reduce computing time and memory by 90% and 70% respectively. Meanwhile, the normalized root mean square deviation (NRMSD) of the time-domain, high-frequency approximation method is over 0.2, and that of the DGTDPO method is only 0.0971. That is, compared with the approximation methods, the hybrid method improves the accuracy by more than 64%

    Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    No full text
    Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%), organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP), and humic acid (HA)) on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (Kdapp) of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene Kdapp while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents

    An Access Control Framework for Multilayer Rail Transit Systems Based on Trust and Sensitivity Attributes

    No full text
    The construction of multilayer rail transit systems is a necessary way to realize “modern metropolitan areas on rail”, improve resource sharing, and increase travel services, where data integration is of utmost importance. To break data silos and realize data flow between different rail systems, a fine-grained access control framework is proposed in this paper. Through categorical and hierarchical schemes, a universal security scale is established for cross-domain data resources. Based on this, a trust and sensitivity attribute-based access control (TSABAC) model is put forward to describe the characteristics of the access control process. Furthermore, the method of policy integration is discussed, as well as the solution to the policy incompatibility problem, due to cross-domain interaction. As shown in practical application and simulation analysis, this framework can meet the requirements of security and granularity. This research is of great significance for promoting the high-quality development of urban agglomerations and metropolitan areas, and improving the quality and efficiency of rail transit

    CrowdParking: Crowdsourcing based parking navigation in autonomous driving era

    No full text
    Finding a free road side parking in urban area is considered as one of the most challenging driving tasks, especially for the autonomous vehicles with limited sight (e.g. short range sensing) and brain (compared with human beings). To assist autonomous vehicle parking in urban area, we propose a novel parking scheme CrowdParking, which applies crowdsourcing and vehicular fog computing to collect parking information from vehicles, locate free parking spaces from crowdsourced data. We also explore the variation of parking availability from a real world data set and find that the availability of specific parking lot has certain relationship with the traffic condition of nearby roads. Based on the observations, we propose the vision of estimating the parking availability with taking into account the traffic condition in neighborhood.Peer reviewe

    Synergistic Effect of 4A Molecular Sieve on Intumescent Ternary H-Bonded Complex in Flame-Retarding of Polypropylene

    No full text
    In this study, a ternary hydrogen (H)-bonded complex intumescent flame retardant (TH-IFR) of melamine (ME) · phosphoric acid (PA)…pentaerythritol (PER) was synthesized through hydrothermal reaction. The combination of the synthesized TH-IFR with 4A molecular sieve as the synergist was used for the first time to improve the flame retardancy of polypropylene (PP). The involved structure, morphology, flame retardancy, flame-retarding mechanism and mechanical properties of the prepared PP composites were systematically investigated. The results show that incorporation of 1 wt% synergist 4A shows the optimum synergistic effect, and the flame retardancy and mechanical properties of the flame-retarded (FR) PP composites are significantly improved. Incorporation of 4A could change the pyrolysis process of the entire system and promote the char-forming chemical interaction, thereby further enhancing the flame retardancy of FR PP composite. The synergistically flame-retarding mechanism of 4A is explained by the significantly improved quality and quantity of the solid-phase char layer, which is formed through generation of SiO2 and Al2O3 substances, and also participation of PP macromolecular chains in the final char layer formation during burning. Furthermore, the improved dispersion and compatibility of TH-IFR in the composite is largely beneficial to the improvement of flame retardancy and mechanical properties
    corecore